extremeH2O®14.8

Large (sports) Lens

Large Diameter Contact Lenses Have Big Benefits

Sports Lens For Active Lifestyles

The larger diameter is more stable on the eye and less likely to decenter or fall out during athletic activities.

Larger Corneas Need More Limbal Clearance

The larger size provides full coverage and sits under the lid. Any lid interaction which could cause discomfort from the lens edge is gone.

Full coverage reduces the feeling of dryness making it a perfect solution for:

- Computer users
- Allergy sufferers
- Middle-aged wearers
- People working in climate controlled offices
- People living in low humidity areas
- Women on birth control and other medications

Why diameter size matters

Disposable contact lenses generally come in one standard diameter. However, a study by Pacific University determined that 27% (1/4 of patients) of contact lens fittings fall outside standard parameters, and 13% specifically would benefit from a large diameter lens. While a "one size fits all" contact is convenient, it overlooks a large segment of your patient base - and might contribute to the steady dropout rate despite strides in contact lens design and breathability.

Studies Indicate 20 Dk/t as benchmark — for high performance daily wear —

Corneal Oxygen Consumption is at 100% of its maximum when a daily wear contact lens has a Dk/T of 20 or more. Therefore clinical studies of Corneal Health, Corneal Swelling and Percentage Corneal Oxygen Consumption (% Q) clearly show that there is no significant clinically measurable Oxygen Transmissibility Benefit to the cornea for daily wear lenses beyond a Dk/T of 20. It seems reasonable based on this important clinical data that 20 Dk/T should be the Oxygen Transmissibility benchmark for High Performance daily wear lenses*.

High Performance Hydrogel - Ultra-Hydrating Material

Our proven GMA/hydrogel copolymer has advanced hydration properties, enabling it to retain up to 99% of its moisture - even under extreme conditions.

- Non-ionic material resists protein deposits keeping lenses clear and healthy
- Naturally hydrophilic coatings are not required for superior comfort
- Proper DK value ensures good corneal health
- Ultra-stable copolymer provides exceptional on-eye stability throughout the entire wearing period

Extreme H2O 14.8 - Available in Daily and Weekly Replacement

Product Specifications		
Diameter	14.8 mm	
Polymer Type	GMA/HEMA copolymer, group 2, high water, non-ionic	
Handling Tint	Light blue	
	Extreme H2O Daily	Extreme H2O Weekly
Material Packaging	Hioxifilcon A with 59% water	Hioxifilcon A with 59% water
Wear Indication	Daily replacement suggested	Daily Wear: Weekly replacement
Packaging	Blister pack: 30 &/or 90 per box	Blister pack: 12 per box
Center Thickness	0.070 mm @ -3.00 mm	0.110 mm @ -3.00 mm
O2 Permeability	28 Dk (Fatt units @ 35°C)	28 Dk (Fatt units @ 35°C)
Base Curve	8.7 / Median	8.7 / Median
Powers	+0.50 to +6.00 & -0.50 to -10.00	+1.00 to +4.00 & -0.50 to -8.00

*Beyond flux: total corneal oxygen consumption as an index of corneal oxygenation during contact lens wear (Brennan et al, Optometry and Vision Science, 2005; 82:467-472)

